Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376151

RESUMEN

Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.

2.
Nanomaterials (Basel) ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34947601

RESUMEN

Liquid-phase exfoliation (LPE) is a widely used and promising method for the production of 2D nanomaterials because it can be scaled up relatively easily. Nevertheless, the yields achieved by this process are still low, ranging between 2% and 5%, which makes the large-scale production of these materials difficult. In this report, we investigate the cause of these low yields by examining the sonication-assisted LPE of graphene, boron nitride nanosheets (BNNSs), and molybdenum disulfide nanosheets (MoS2 NS). Our results show that the low yields are caused by an equilibrium that is formed between the exfoliated nanosheets and the flocculated ones during the sonication process. This study provides an understanding of this behaviour, which prevents further exfoliation of nanosheets. By avoiding this equilibrium, we were able to increase the total yields of graphene, BNNSs, and MoS2 NS up to 14%, 44%, and 29%, respectively. Here, we demonstrate a modified LPE process that leads to the high-yield production of 2D nanomaterials.

3.
Polymers (Basel) ; 12(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003651

RESUMEN

The optimization of the thermal treatment of cationic starch in the paper industry offers the opportunity to reduce the energy consumption of this process. Four different industrially relevant cationic starches, varying in source, cationization method and degree of substitution were treated by a steam-jet cooking procedure, comparable to industrially employed starch cooking processes. The influence of the starch properties and cooking parameters on the adsorption behavior of the starches on cellulosic pulp was investigated. The adsorbed amount was affected by the cooking temperature and the type of starch. For some starch grades, a cooking temperature of 115 °C can be employed to achieve sufficient starch retention on the pulp fibers. The energy consumption could further be reduced by cooking at higher starch concentrations without loss of adsorption efficiency.

4.
J Phys Chem A ; 122(12): 3227-3237, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29513531

RESUMEN

Ionization in the condensed phase and molecular clusters leads to a complicated chain of processes with coupled electron-nuclear dynamics. It is difficult to describe such dynamics with conventional nonadiabatic molecular dynamics schemes since the number of states swiftly increases as the molecular system grows. It is therefore attractive to use a direct electron and nuclear propagation such as the real-time time-dependent density functional theory (RT-TDDFT). Here we report a RT-TDDFT benchmark study on simulations of singly and doubly ionized states of a water monomer and dimer as a prototype for more complex processes in a condensed phase. We employed the RT-TDDFT based Ehrenfest molecular dynamics with a generalized gradient approximate (GGA) functional and compared it with wave-function-based surface hopping (SH) simulations. We found that the initial dynamics of a singly HOMO ionized water dimer is similar for both the RT-TDDFT/GGA and the SH simulations but leads to completely different reaction channels on a longer time scale. This failure is attributed to the self-interaction error in the GGA functionals and it can be avoided by using hybrid functionals with large fraction of exact exchange (represented here by the BHandHLYP functional). The simulations of doubly ionized states are reasonably described already at the GGA level. This suggests that the RT-TDDFT/GGA method could describe processes following the autoionization processes such as Auger emission, while its applicability to more complex processes such as intermolecular Coulombic decay remains limited.

5.
J Phys Chem A ; 122(14): 3583-3593, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29488764

RESUMEN

The rational control of the electronic and optical properties of small functionalized diamond-like molecules, the diamondoids, is the focus of this work. Specifically, we investigate the single- and double- functionalization of the lower diamondoids, adamantane, diamantane, and triamantane with -NH2 and -SH groups and extend the study to N-heterocyclic carbene (NHC) functionalization. On the basis of electronic structure calculations, we predict a significant change in the optical properties of these functionalized diamondoids. Our computations reveal that -NH2 functionalized diamondoids show UV photoluminescence similar to ideal diamondoids while -SH substituted diamondoids hinder the UV photoluminescence due to the labile nature of the S-H bond in the first excited state. This study also unveils that the UV photoluminescence nature of -NH2 diamondoids is quenched upon additional functionalization with the -SH group. The double-functionalized derivative can, thus, serve as a sensitive probe for biomolecule binding and sensing environmental changes. The preserved intrinsic properties of the NHC and the ideal diamondoid in NHC-functionalized-diamondoids suggests its utilization in diamondoid-based self-assembled monolayers (SAM), whose UV-photoluminescent signal would be determined entirely by the functionalized diamondoids. Our study aims to pave the path for tuning the properties of diamondoids through a selective choice of the type and number of functional groups. This will aid the realization of optoelectronic devices involving, for example, large-area SAM layers or diamondoid-functionalized electrodes.

6.
J Chem Theory Comput ; 14(3): 1471-1486, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29357238

RESUMEN

We present an ab initio parametrization scheme for explicitly dipole-polarizable force fields for the simulation of molecular liquids. The scheme allows for, in principle, arbitrarily coarse-grained representations. All parameters in the force field are derived from first-principles, based on simple physical arguments. Only one fit parameter enters the parametrization, a global scaling factor for the size of the particles, which is adjusted to reproduce the experimental mass density. As important examples and for the first time, polarizable coarse-grained force fields are derived for 1-alkyl-3-methylimidazolium cations with varying alkyl-chain lengths (alkyl = ethyl, butyl, hexyl) and hexafluorophosphate and tetrafluoroborate anions. Our findings are in good agreement with experimental results and results of further atomistic simulations. Hence, the force fields can be faithfully used where polarizability is expected to play a significant role, such as simulations of energy storage devices.

7.
J Phys Condens Matter ; 29(50): 504004, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29125468

RESUMEN

We present a coarse-grained polarizable molecular dynamics force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]). For the treatment of electronic polarizability, we employ the Drude model. Our results show that the new explicitly polarizable force field reproduces important static and dynamic properties such as mass density, enthalpy of vaporization, diffusion coefficients, or electrical conductivity in the relevant temperature range. In situations where an explicit treatment of electronic polarizability might be crucial, we expect the force field to be an improvement over non-polarizable models, while still profiting from the reduction of computational cost due to the coarse-grained representation.

8.
Phys Rev E ; 96(1-1): 013319, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347119

RESUMEN

Core-level spectra of liquids can be difficult to interpret due to the presence of a range of local environments. We present computational methods for investigating core-level spectra based on the idea that both local structural parameters and the x-ray spectra behave as functions of the local atomic configuration around the absorbing site. We identify correlations between structural parameters and spectral intensities in defined regions of interest, using the oxygen K-edge excitation spectrum of liquid water as a test case. Our results show that this kind of analysis can find the main structure-spectral relationships of ice, liquid water, and supercritical water.

9.
Chem Commun (Camb) ; 52(90): 13265-13268, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27775108

RESUMEN

The first hybrid crown ether with two adjacent disilane fragments was synthesized through reaction of O(Si2Me4Cl)2 (3) with O(C2H4OH)2. By means of DFT calculations, the complexation ability of 1,2,4,5-tetrasila[12]crown-4 (7) towards Li+ was determined to be considerably higher compared to [12]crown-4.

10.
Phys Chem Chem Phys ; 18(41): 28398-28402, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27722327

RESUMEN

Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria.

11.
J Phys Chem B ; 119(49): 15212-20, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26555929

RESUMEN

Microorganisms accumulate molar concentrations of compatible solutes like ectoine to prevent proteins from denaturation. Direct structural or spectroscopic information on the mechanism and about the hydration shell around ectoine are scarce. We combined surface plasmon resonance (SPR), confocal Raman spectroscopy, molecular dynamics simulations, and density functional theory (DFT) calculations to study the local hydration shell around ectoine and its influence on the binding of a gene-5-protein (G5P) to a single-stranded DNA (dT25). Due to the very high hygroscopicity of ectoine, it was possible to analyze the highly stable hydration shell by confocal Raman spectroscopy. Corresponding molecular dynamics simulation results revealed a significant change of the water dielectric constant in the presence of a high molar ectoine concentration as compared to pure water. The SPR data showed that the amount of protein bound to DNA decreases in the presence of ectoine, and hence, the protein-DNA dissociation constant increases in a concentration-dependent manner. Concomitantly, the Raman spectra in terms of the amide I region revealed large changes in the protein secondary structure. Our results indicate that ectoine strongly affects the molecular recognition between the protein and the oligonucleotide, which has important consequences for osmotic regulation mechanisms.


Asunto(s)
Aminoácidos Diaminos/química , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Espectrometría Raman , Resonancia por Plasmón de Superficie , Agua/química
12.
Langmuir ; 31(38): 10377-81, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26334484

RESUMEN

Self-assembled phases based on monoglycerides are promising candidates for drug delivery systems. Alterations of these phases need to be performed by addition of substances which are biocompatible. Inverse bicontinuous cubic phases are altered by the addition of five amino acids, namely, glycine, phenylalanine, alanine, glutamine, and tryptophan. These natural molecules have a diversity of side chains which predicts their polarity and subsequently their interaction with the interfacial region. Whereas polar amino acids cause a slight shrinking of the fully hydrated phase, amino acids with a nonpolar side chain expand it. Tryptophan is also able to provoke a growth of inverse hexagonal, micellar cubic, and micellar structures. Amino acid concentrations in the aqueous phase, even above the amino acid's solubility, further affect all aforementioned structures and cause a significant enlargement of up to 26%. Besides the amino acids' impact on the structural sizes, they also affect the phase transition temperatures.


Asunto(s)
Aminoácidos/química , Monoglicéridos/química , Monoglicéridos/síntesis química , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie , Temperatura de Transición
13.
Nat Chem ; 7(3): 250-4, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25698335

RESUMEN

Alkali metals can react explosively with water and it is textbook knowledge that this vigorous behaviour results from heat release, steam formation and ignition of the hydrogen gas that is produced. Here we suggest that the initial process enabling the alkali metal explosion in water is, however, of a completely different nature. High-speed camera imaging of liquid drops of a sodium/potassium alloy in water reveals submillisecond formation of metal spikes that protrude from the surface of the drop. Molecular dynamics simulations demonstrate that on immersion in water there is an almost immediate release of electrons from the metal surface. The system thus quickly reaches the Rayleigh instability limit, which leads to a 'coulomb explosion' of the alkali metal drop. Consequently, a new metal surface in contact with water is formed, which explains why the reaction does not become self-quenched by its products, but can rather lead to explosive behaviour.

14.
Nat Chem ; 6(8): 697-701, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25054939

RESUMEN

It is generally assumed that the hydrated electron occupies a quasi-spherical cavity surrounded by only a few water molecules in its equilibrated state. However, in the very moment of its generation, before water has had time to respond to the extra charge, it is expected to be significantly larger in size. According to a particle-in-a-box picture, the frequency of its absorption spectrum is a sensitive measure of the initial size of the electronic wavefunction. Here, using transient terahertz spectroscopy, we show that the excess electron initially absorbs in the far-infrared at a frequency for which accompanying ab initio molecular dynamics simulations estimate an initial delocalization length of ≈ 40 Å. The electron subsequently shrinks due to solvation and thereby leaves the terahertz observation window very quickly, within ≈ 200 fs.


Asunto(s)
Agua/química , Electrones , Simulación de Dinámica Molecular , Teoría Cuántica , Espectroscopía de Terahertz
15.
J Phys Chem A ; 118(35): 7507-15, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24576141

RESUMEN

The optical spectrum of the hydrated (aqueous) electron, e(aq)(­), is the primary observable by means of which this species is detected, monitored, and studied. In theoretical calculations, this spectrum has most often been simulated using one-electron models. Here, we present ab initio simulations of that spectrum in both bulk water and, for the first time, at the water/vapor interface, using density functional theory and its time-dependent variant. Our results indicate that this approach provides a reliable description, and quantitative agreement with the experimental spectrum for the bulk species is obtained using a "tuned" long-range corrected functional. The spectrum of the interfacial electron is found to be very similar to the bulk spectrum.

18.
J Phys Chem Lett ; 4(2): 338-43, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-26283445

RESUMEN

The hydrated electron is a crucial species in radiative processes, and it has been speculated that its behavior at the water surface could lead to specific interfacial chemical properties. Here, we address fundamental questions concerning the structure and energetics of an electron at the surface of water. We use the method of ab initio molecular dynamics, which was shown to provide a faithful description of solvated electrons in large water clusters and in bulk water. The present results clearly demonstrate that the surface electron is mostly buried in the interfacial water layer, with only about 10 % of its density protruding into the vapor phase. Consequently, it has a structure that is very similar to that of an electron solvated in the aqueous bulk. This points to a general feature of charges at the surface of water, namely, that they do not behave as half-dehydrated but rather as almost fully hydrated species.

19.
Acc Chem Res ; 45(1): 23-32, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21899274

RESUMEN

Understanding the properties of hydrated electrons, which were first observed using pulse radiolysis of water in 1962, is crucial because they are key species in many radiation chemistry processes. Although time-resolved spectroscopic studies and molecular simulations have shown that an electron in water (prepared, for example, by water photoionization) relaxes quickly to a localized, cavity-like structure ∼2.5 Šin radius, this picture has recently been questioned. In another experimental approach, negatively charged water clusters of increasing size were studied with photoelectron and IR spectroscopies. Although small water clusters can bind an excess electron, their character is very different from bulk hydrated species. As data on electron binding in liquid water have become directly accessible experimentally, the cluster-to-bulk extrapolations have become a topic of lively debate. Quantum electronic structure calculations addressing experimental measurables have, until recently, been largely limited to small clusters; extended systems were approached mainly with pseudopotential calculations combining a classical description of water with a quantum mechanical treatment of the excess electron. In this Account, we discuss our investigations of electrons solvated in water by means of ab initio molecular dynamics simulations. This approach, applied to a model system of a negatively charged cluster of 32 water molecules, allows us to characterize structural, dynamical, and reactive aspects of the hydrated electron using all of the system's valence electrons. We show that under ambient conditions, the electron localizes into a cavity close to the surface of the liquid cluster. This cavity is, however, more flexible and accessible to water molecules than an analogous area around negatively charged ions. The dynamical process of electron attachment to a neutral water cluster is strongly temperature dependent. Under ambient conditions, the electron relaxes in the liquid cluster and becomes indistinguishable from an equilibrated, solvated electron on a picosecond time scale. In contrast, for solid, cryogenic systems, the electron only partially localizes outside of the cluster, being trapped in a metastable, weakly bound "cushion-like" state. Strongly bound states under cryogenic conditions could only be prepared by cooling equilibrated, liquid, negatively charged clusters. These calculations allow us to rationalize how different isomers of electrons in cryogenic clusters can be observed experimentally. Our results also bring into question the direct extrapolation of properties of cryogenic, negatively charged water clusters to those of electrons in the bulk liquid. Ab initio molecular dynamics represents a unique computational tool for investigating the reactivity of the solvated electron in water. As a prototype, the electron-proton reaction was followed in the 32-water cluster. In accord with experiment, the molecular mechanism is a proton transfer process that is not diffusion limited, but rather controlled by a proton-induced deformation of the excess electron's solvent shell. We demonstrate the necessary ingredients of a successful density functional methodology for the hydrated electron that avoids potential pitfalls, such as self-interaction error, insufficient basis set, or lack of dispersion interactions. We also benchmark the density functional theory methods and outline the path to faithful ab initio simulations of dynamics and reactivity of electrons solvated in extended aqueous systems.

20.
J Phys Chem Lett ; 3(20): 3071-5, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-26292252

RESUMEN

The structure of the hydrated electron, which is a key species in radiative processes in water, has remained elusive. The traditional cavity model has been questioned recently, but the newly suggested picture of an electron delocalized over a region of enhanced water density is controversial. Here, we present results from ab initio molecular dynamics simulations, where not only the excess electron but also the valence electrons of the surrounding water molecules are described quantum mechanically. Unlike in previous one-electron pseudopotential calculations, many-electron interactions are explicitly accounted for. The present approach allows for partitioning of the electron solvated in liquid water into contributions from an inner cavity, neighboring water molecules, and a diffuse tail. We demonstrate that all three of these contributions are sizable and, consequently, important, which underlines the complex nature of the hydrated electron and warns against oversimplified interpretations based on pseudopotential models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...